

Axial Gaps in HQ

05/16/2011

Collaboration Meeting 16, Montauk - NY - May 16th to 18th 2011

B. Collins - H. Felice - J. Krishnan - D. Dietderich

Parameters affecting the gap sizes

Winding tension relaxation

- winding tension
- Young modulus of the cable: Brett's measurements

Dimensional changes during reaction

- Bare cable dimensional changes: Jyothi's measurements
- experience on HQ coil 13 and LQ coils

Winding tension relaxation

•Baseline gap in HQ: 30 mils = 0.76 mm

•Closed after curing in all coils 3 to 12 but coil 5

•Winding tension used in HQ winding: 20 lbs => 5 MPa in HQ

•Young modulus measured on various HQ cables: large spread from 5 to 20 GPa

Modulus vs. Stress for 100lb Cycle

Winding tension relaxation

•Baseline gap in HQ: 30 mils = 0.76 mm

• If we consider the range of Young modulus

Eyou	ung	Expected relaxation					
5.00	GPa	-1.01	mm/m	28	mils		
12.00	GPa	-0.42	mm/m	12	mils		
20.00	GPa	-0.25	mm/m	7	mils		

- •For a 5 GPa modulus: in agreement with the gap in HQ coils closed after curing
 - •For larger modulus: need to justify the 30 mils gap closure in all HQ coils

As a lower bound we can consider 1 mm/m of gap to allow for winding tension relaxation

Dimensional changes during reaction

Lawrence Berkeley National Laboratory

Measurement performed by Jyothi on unconfined HQ cables

Wedsarement performed by systim on all commed in a casies								
Coils	strand	Sample ID	Change in Length			If applied in the coil		
4/5/6/7	108/127	HQ-1000R-1	-0.08	%	-0.8	mm/m	-28/-0.7	mils/mm
4/3/0//		HQ-1000R-2	-0.11	%	-1	mm/m	-20/-0.7	
8/9/2010	54/61	HQ-996R	-0.17	%	-1.7	mm/m	-50/-1.3	mils/mm
13	54/61	HQ-1008-1	-0.23	%	-2.3	mm/m	-81/-2.1	mils/mm
13		HQ-1008-2	-0.31	%	-3.1	mm/m	-01/-2.1	
R&D cable 108/127		HQ-1014-H1	-0.27	%	-2.7	mm/m		
		HQ-1014-H2	-0.09	%	-0.9	mm/m		

Cable annealed for 16h

•Data from coils:

HQ13	54/61	OL IL - gap closed	-0.3 -0.27	% %	-3 -2.7	mm/m mm/m	1 pass cable
LQ avg (7 coils)		OL IL - gap closed	-0.14 -0.19	% %	-1.4 -1.9	mm/m mm/m	2 pass cables

<u>As a higher bound</u> we can consider the dimensional changes occurring in an unconfined cable.

In average: 2mm/m

HQ14 gap size

In total if we take into account winding relaxation + contraction after reaction:

~ 3 mm/m => 90 mils (average of both layers)

Do we want to introduce an even greater gap in coil 14 to get a new data point (1 pass cable)?